Skip to main content

Rego Cheat Sheet

Rules - The building blocks of Rego

Complete Rules

Complete rules assign a single value. (Try It)

default allow := false

allow if {
input.user.role == "admin"
input.user.internal
}

default request_quota := 100

request_quota := 1000 if input.user.internal

request_quota := 50 if input.user.plan.trial

Partial Rules

Partial rules generate and assign a set of values to a variable. (Try It)

paths contains "/handbook/*"

paths contains path if {
some team in input.user.teams
path := sprintf("/teams/%v/*", [team])
}
// Output
{
"paths": ["/handbook/*", "/teams/owl/*", "/teams/tiger/*"]
}

Iteration - Make quick work of collections

Some

Name local query variables. (Try It)

all_regions := {
"emea": {"west", "east"},
"na": {"west", "east", "central"},
"latam": {"west", "east"},
"apac": {"north", "south"},
}

allowed_regions contains region_id if {
some area, regions in all_regions

some region in regions
region_id := sprintf("%s_%s", [area, region])
}
// Output
{
"allowed_regions": [
"apac_north", "apac_south", "emea_east", ...
]
}

Every

Check conditions on many elements. (Try It)

allow if {
prefix := sprintf("/docs/%s/", [input.userID])
every path in input.paths {
startswith(path, prefix)
}
}

Control Flow - Handle different conditions

Logical AND

Statements in rules are joined with logical AND. (Try It)

valid_staff_email if {
regex.match(`^\S+@\S+\.\S+$`, input.email)

# and
endswith(input.email, "example.com")
}

Logical OR

Express OR with multiple rules, functions or the in keyword. (Try It)

# using multiple rules
valid_email if endswith(input.email, "@example.com")

valid_email if endswith(input.email, "@example.org")

valid_email if endswith(input.email, "@example.net")

# using functions
allowed_firstname(name) if {
startswith(name, "a")
count(name) > 2
}

allowed_firstname("joe") # if name == 'joe'

valid_name if {
allowed_firstname(input.name)
}

# using `in`
valid_request if {
input.method in {"GET", "POST"}
}
// Output
{
"email": "opa@example.com", "name": "anna", "method": "GET"
}

Testing - Validate your policy's behavior

With

Override input and data using the with keyword. (Try It)

allow if input.admin == true

test_allow_when_admin if {
allow with input as {"admin": true}
}

Debugging - Find and fix problems

Print

Use print in rules to inspect values at runtime. (Try It)

allowed_users := {"alice", "bob", "charlie"}

allow if {
some user in allowed_users
print(user)
input.user == user
}
// Output
// alice
// bob
// charlie

Comprehensions - Rework and process collections

Arrays

Produce ordered collections, maintaining duplicates. (Try It)

doubled := [m |
some n in [1, 2, 3, 3]
m := n * 2
]
// Output
{
"doubled": [2, 4, 6, 6]
}

Sets

Produce unordered collections without duplicates. (Try It)

unique_doubled contains m if {
some n in [10, 20, 30, 20, 10]
m := n * 2
}
// Output
{
"unique_doubled": [20, 40, 60]
}

Objects

Produce key:value data. Note, keys must be unique. (Try It)

is_even[number] := is_even if {
some number in [1, 2, 3, 4]
is_even := (number % 2) == 0
}
// Output
{
"is_even": {
"1": false, "2": true, "3": false, "4": true
}
}

Builtins - Handy functions for common tasks

Regex

Pattern match and replace string data. (Try It)

example_string := "Build Policy as Code with OPA!"

check_match if regex.match(`\w+`, example_string)

check_replace := regex.replace(example_string, `\s+`, "_")
// Output
{
"check_match": true,
"check_replace": "Build_Policy_as_Code_with_OPA!"
}

Strings

Check and transform strings. (Try It)

example_string := "Build Policy as Code with OPA!"

check_contains if contains(example_string, "OPA")
check_startswith if startswith(example_string, "Build")
check_endswith if endswith(example_string, "!")
check_replace := replace(example_string, "OPA", "Styra")
check_sprintf := sprintf("OPA is %s!", ["awesome"])
// Output
{
"check_contains": true,
"check_startswith": true,
"check_endswith": true,
"check_replace": "Build Policy as Code with Styra!",
"check_sprintf": "OPA is awesome!"
}

Aggregates

Summarize data. (Try It)

vals := [5, 1, 4, 2, 3]
vals_count := count(vals)
vals_max := max(vals)
vals_min := min(vals)
vals_sorted := sort(vals)
vals_sum := sum(vals)
// Output
{
"vals_count": 5,
"vals_max": 5,
"vals_min": 1,
"vals_sorted": [1, 2, 3, 4, 5],
"vals_sum": 15
}

Objects: Extracting Data

Work with key value and nested data. (Try It)

obj := {"userid": "18472", "roles": [{"name": "admin"}]}

# paths can contain array indexes too
val := object.get(obj, ["roles", 0, "name"], "missing")

defaulted_val := object.get(
obj,
["roles", 0, "permissions"], # path
"unknown", # default if path is missing
)

keys := object.keys(obj)
// Output
{
"val": "admin",
"defaulted_val": "unknown",

"keys": ["roles", "userid"]
}

Objects: Transforming Data

Manipulate and make checks on objects. (Try It)

unioned := object.union({"foo": true}, {"bar": false})

subset := object.subset(
{"foo": true, "bar": false},
{"foo": true}, # subset object
)

removed := object.remove(
{"foo": true, "bar": false},
{"bar"}, # remove keys
)
// Output
{
"removed": { "foo": true },
"subset": true,
"unioned": { "bar": false, "foo": true }
}

The Rego Cheat Sheet is maintained by Styra, the creators of OPA, and the Styra community. If you have any questions, suggestions, or would like to get involved, please join us on our Slack.